Quasi-isometry invariance of group splittings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-isometry Invariance of Novikov-shubin Invariants for Amenable Groups

We use the notion of uniform measure equivalence to prove that the Novikov-Shubin invariants resp. the capacities of amenable groups are invariant under quasi-isometry. Further, we comment on the connection to Gaboriau’s theorem on the invariance of L-Betti numbers under orbit equivalence.

متن کامل

Quasi-isometry rigidity of groups

2 Rigidity of non-uniform rank one lattices 6 2.1 Theorems of Richard Schwartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Finite volume real hyperbolic manifolds . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Twisted Conjugacy and Quasi-isometry Invariance for Generalized Solvable Baumslag-solitar Groups

We say that a group has property R∞ if any group automorphism has an infinite number of twisted conjugacy classes. Fel’shtyn and Gonçalves prove that the solvable BaumslagSolitar groups BS(1, m) have property R∞. We define a solvable generalization Γ(S) of these groups which we show to have property R∞. We then show that property R∞ is geometric for these groups, that is, any group quasi-isomet...

متن کامل

Homological Invariants and Quasi - Isometry

Building upon work of Y. Shalom we give a homological-algebra flavored definition of an induction map in group homology associated to a topological coupling. As an application we obtain that the cohomological dimension cdR over a commutative ring R satisfies the inequality cdR(Λ) ≤ cdR(Γ) if Λ embeds uniformly into Γ and cdR(Λ) < ∞ holds. Another consequence of our results is that the Hirsch ra...

متن کامل

A finitely-presented solvable group with a small quasi-isometry group

We exhibit a family of infinite, finitely-presented, nilpotent-byabelian groups. Each member of this family is a solvable S-arithmetic group that is related to Baumslag-Solitar groups, and everyone of these groups has a quasi-isometry group that is virtually a product of a solvable real Lie group and a solvable p-adic Lie group. In addition, we propose a candidate for a polycyclic group whose q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Mathematics

سال: 2005

ISSN: 0003-486X

DOI: 10.4007/annals.2005.161.759